Nanobodies for Diagnosis

and Therapy.

Prof. Dr. Serge Muyldermans

Vrije Universiteit Brussel

Importance of Antibodies

Antibodies are at the core of many diagnostic and therapeutic applications

In diagnostics, antibodies are used as capturing and/or as detection agents even in complex mixtures.

Antibodies are the natural therapeutics in vertebrates

- Can be raised against virtually any target (antigen)
- Highly specific for this antigen (epitope)
- Associate with high affinity to this antigen
- Can be obtained in monoclonal form in nearly unlimited amounts.

Abs have conserved architecture

The core question

Can we make antibodies any better?

Answer: Yes Nanobodies

A Nanobody is a generic tool. It can be used for research, for diagnostic applications and for therapy, to remediate environmental contaminations, to detect and treat veterinarian & human infections and diseases.

But what is a Nanobody?

Outline of the today's presentation

- Basics of unique llama Heavy Chain Antibodies & recombinant single-domain antigen binding fragments (= Nanobodies)
- 2. How to obtain antigen-specific Nanobodies
- 3. Advantages of Nanobodies
- 4. Applications with Nbs as capturing or detection agents and in therapy.

Nanobodies for Diagnosis and Therapy

- 1. Basics of unique llama HCAbs and Nanobodies
- How to obtain antigen-specific Nanobodies
- Advantages of Nanobodies
- 4. Applications with Nbs.

Vrije Universiteit Brussel

Camelid antibodies

VH and VHH differences

Nanobodies for Diagnosis and Therapy

- Basics of unique llama HCAbs and Nanobodies
- 2. How to obtain antigen-specific Nanobodies
- Advantages of Nanobodies
- Applications with Nbs.

Vrije Universiteit Brussel

Animalarium: Dubaï, Tunisia, Peru

Selection of antigen-specific Nb

Nanobodies for Diagnosis and Therapy

- 1. Basics of unique Ilama HCAbs and Nanobodies
- 2. How to obtain antigen-specific Nanobodies
- 3. Advantages of Nanobodies
- 4. Applications with Nbs.

Vrije Universiteit Brussel

Antigen-binding fragments of Abs

scFv

Scrambling of affinity matured VH-VL pairs

$$10^6 -> 10^{12}$$

No scrambing of Ag-specific domain as only one gene fragment is amplified

$$10^6 = 10^6$$

Nb properties versus scFv and Fab

- Efficient identification of Ag binders
- Nb > scFv = Fab

Good expression yields

Nb > scFv = Fab

Good stability

Nb > Fab > scFv

Good solubility

Nb > Fab > scFv

Antigen specific

Nb = Fab = scFv

High affinity for the Ag

- Nb = Fab = scFv
- Nbs target unique epitopes
- $Nb \neq scFv = Fab$

Easy tailoring

Nb > scFv = Fab

Purification of Nbs

Nb expressed in *E.coli*Extracted from periplasm,
Immobilized Metal Affinity Chromatography,
Size Exclusion Chromatography

Tailoring into pluripotent constructs

Bivalent:

Conrath et al., JBC 2001

Bispecific:

Conrath et al., JBC 2001

Pentavalent:

Zhang et al., JMB 2004

Decavalent/bispecific:

Stone et al., J Imm Meth 2007

Immuno-enzyme (ADEPT):

Cortez-Retamozo et al., Can Res 2004

Immuno-toxin:

Baral et al., Nat Med 2006

Chromobody:

Rothbauer et al., Nat Meth 2006

HCAb:

Hmila et al., Mol Immunol 2008

<u>Scorpion</u> (bispecific + Fc effector function)

The 4S HARE

An optimal/practical binder fulfills the 4S HARE requirements

- S: Small size
- S: **S**oluble in aqueous environment
- S: Stable
- S: Specific for antigen
- H: **H**uman sequence
- A: Affinity for antigen
- R: Renewable and sustainable
- E: Economic to produce (= good yield of Expression)

Nanobodies are just perfect

Nanobodies for Diagnosis and Therapy

- 1. Basics of unique Ilama HCAbs and Nanobodies
- How to obtain antigen-specific Nanobodies
- Advantages of Nanobodies
- 4. Applications with Nbs.

Vrije Universiteit Brussel

Nb specificity + use as intrabody

Molecular imaging: In vivo cell staining

Molecular imaging: In vivo cell staining

Blood retention versus Ab size

Most important factor for imaging: **Contrast** (tumor load/blood ratio)

Experimental setup

subcutaneous injection of 2x10⁶ HER2 positive tumor cells in hind limb of athymic nu/nu mice

> Intravenous injection of ^{99m}Tc-labeled Nanobody®

In-vivo non invasive imaging

~40 Nbs against Her-2

Select best binder for non-invasive imaging without overlap with Trastuzumab

Produce under GMP and evaluate in breast cancer patients

~1M € translational medicine grant (UZBrussel)

Nbs against African trypanosomes

Antigenic variation

Trypanolytic Nbs

Nbs against scorpion toxin

Scorpion in Tunisia: *Androctonus australis hector*

Extract venom

(SEC over Sephadex-G50, followed Mono-S FPLC and C-8 reverse phase HPLC to purify AahI' and AahII (LD50 in Swiss mouse \approx 3 ng for i.c.v. and 250 ng for s.c.)

Immunise dromedary with AahI' or AahII enriched fractions and identify Nbs against AahI' or against AahII

AahI' neutralisation with Nbs (i.c.v.)

- 1. Inject (icv) variable amounts of purified AahI' toxin in mice) to determine LD₅₀ = 3 ng AahI' per mouse
- 2. Mix variable amounts of toxin with Nb, inject ivc and monitor survival

NbAahl'F12 has an exceptionally high neutralisation capacity reaching 100% neutralisation of 100 LD50.

Such neutralisation capacity was never observed before for any other antibody preparation.

Construction of bispecific Nbs

NbAahI'-F12: neutralises AahI'

NbAahII-10: neutralises AahII

Bispecific Nb-F12-10: targets AahI' and AahII

Mix AahG50 venom (contains Aahl' and Aahll) with bispecific and inject icv to monitor protection

Neutralisation of AahG50

Protection by bispecific Nb

1. Inject variable amounts of venom (sc) and then inject (iv) Nb or horse polyclonal serotherapeutic

2. Inject (sc) 1.5 LD_{50} of AahG50 (A) or total venom (B) in mouse and at variable times inject (iv) 85 μ g of bispecific Nb and monitor survivals

Acknowledgments

Postdocs in our group

Gh. Hassanzadeh (NSF),

N. Devoogdt

C.Vincke

B. Stijlemans

S. Magez

P. De Baetselier

T. Lahoutte,

V. Caveliers

Non-VIB collaborations

CVRL (Dubai, UAE)

U. Wernery, J. Kinne

ITM

P. Dorny

Tunisia (PTI)

I. Hmila

R. Ben Abderrazek

B. Bouhaouala